The CSeries airplanes are swept-wing monoplanes with a composite wing fuel tank structure and an aluminum alloy fuselage that is sized for 5-abreast seating. Passenger capacity is designated as 110 for the Model BD–500–1A10 and 125 for the Model BD–500–1A11. Maximum takeoff weight is 131,000 pounds for the Model BD–500–1A10 and 144,000 pounds for the Model BD–500–1A11.

Type Certification Basis

Under the provisions of Title 14, Code of Federal Regulations (14 CFR) 21.17, Bombardier Aerospace must show that the CSeries airplanes meet the applicable provisions of part 25 as amended by Amendments 25–1 through 25–129. If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for the CSeries airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of §21.16.

Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, the special conditions would also apply to the other model under §21.101. In addition to the applicable airworthiness regulations and special conditions, the CSeries airplanes must comply with the fuel vent and exhaust requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36, and the FAA must issue a finding of regulatory adequacy under §611 of Public Law 92–574, the “Noise Control Act of 1972.”

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with §11.38, and they become part of the type certification basis under §21.17.

Novel or Unusual Design Features

The CSeries airplanes will incorporate the following novel or unusual design feature: A fuel tank nitrogen generation system (NGS) that is intended to control fuel tank flammability for all fuel tanks. This NGS is designed to provide a level of performance to all fuel tanks of the CSeries airplanes because of a novel or unusual design feature, special conditions are prescribed under the provisions of §21.16.

The NGS is intended to control fuel tank flammability for all fuel tanks as defined in §25.981(b), as amended by Amendment 25–125.

Ignition Source Prevention

Section 25.981(a)(3) requires applicants to show that an ignition source in the fuel tank system could not result from any single failure, from any single failure in combination with any latent failure condition not shown to be extremely remote, or from any combination of failures not shown to be extremely improbable. This requirement was originally adopted in Amendment 25–102, and it requires the assumption that the fuel tanks are always flammable when showing that the probability of an ignition source being present is extremely remote. (Amendment 25–102 included §25.981(c) that required minimizing fuel tank flammability, and this was defined in the preamble as being equivalent to unheated aluminum fuel tanks located in the wing.) This requirement defines three types of scenarios that must be addressed in order to show compliance with §25.981(a)(3). The first scenario is that any single failure, regardless of the probability of occurrence of the failure, must not cause an ignition source. The second scenario is that any single failure, regardless of the probability of occurrence, in combination with any latent failure condition not shown to be at least extremely remote, must not cause an ignition source. The third scenario is that any combination of failures not shown to be extremely improbable must not cause an ignition source. Demonstration of compliance with this requirement would typically require a structured, quantitative safety analysis. Design areas that have latent failure conditions typically would be driven by these requirements to have multiple fault tolerance, or “triple redundancy.” This means that ignition
sources are still prevented even after two independent failures.

Flammability Limits

Section 25.981(b) states that no fuel tank fleet average flammability exposure may exceed 3 percent of the flammability exposure evaluation time calculated using the method in part 25, appendix N, or the fleet average flammability of a fuel tank within the wing of the airplane being evaluated, whichever is greater. If the wing is not a conventional unheated aluminum wing, the analysis must be based on an assumed equivalent conventional construction unheated aluminum wing. In addition, for fuel tanks that are normally emptied during operation and that have any part of the tank located within the fuselage contour, the fleet average flammability for warm days (above 80 °F) must be limited to 3 percent as calculated using the method in part 25, appendix M.

Application of Existing Regulations Inappropriate Due to Impracticality

Since the issuance of § 25.981(a)(3), as amended by Amendment 25–102, the FAA has conducted certification projects in which applicants found it impractical to meet the requirements of that regulation for some areas of lightning protection for fuel tank structure. Partial exemptions were issued for these projects. These same difficulties exist for the CSeries project. The difficulty of designing multiple-fault-tolerant structure, and the difficulty of detecting failures of hidden structural design features in general, makes compliance with § 25.981(a)(3) uniquely challenging and impractical for certain aspects of the electrical bonding of structural elements. Such bonding is needed to prevent occurrence of fuel tank ignition sources from lightning strikes. The effectiveness and fault tolerance of electrical bonding features for structural joints and fasteners is partially dependent on design features that cannot be effectively inspected or tested after assembly without damaging the structure, joint, or fastener. Examples of such features include a required interference fit between the shank of a fastener and the hole in which the fastener is installed, metal foil or mesh imbedded in composite material, a required clamping force provided by a fastener to pull two structural parts together, and a required faying surface bond between the flush surfaces of adjacent pieces of structural material such as in a wing skin joint or a mounting bracket installation. In addition, other features that can be physically inspected or tested may be located within the fuel tanks; therefore, it is not practical to inspect for failures of those features at short intervals. Examples of such failures include separation or loosening of cap seals over fastener ends and actual structural failures of internal fasteners. This inability to practically detect manufacturing errors and failures of structural design features critical to lightning protection results in degraded conditions that occur and remain in place for a very long time, possibly for the remaining life of the airplane.

Accounting for such long failure latency periods in the system safety analysis required by § 25.981(a)(3) would require multiple fault tolerance in the structural lightning protection design. As part of the design development activity for the CSeries, Bombardier has examined possible design provisions to provide multiple fault tolerance in the structural design to prevent ignition sources from occurring in the event of lightning attachment to the airplane in critical locations. Bombardier has concluded from this examination that providing multiple fault tolerance for some structural elements is not practical. Bombardier has also identified some areas of the CSeries design where it is impractical to provide even single fault tolerance in the structural design to prevent ignition sources from occurring in the event of lightning attachment after a single failure. The FAA has reviewed this examination with Bombardier in detail and has agreed that providing fault tolerance beyond that in the proposed CSeries design for these areas would be impractical.

As a result of the CSeries and other certifications projects, the FAA has now determined that compliance with § 25.981(a)(3) is impractical for some areas of lightning protection for fuel tank structure, and that application of § 25.981(a)(3) to those design areas is therefore inappropriate. The FAA plans further rulemaking to revise § 25.981(a)(3). As appropriate, the FAA plans to issue special conditions or exemptions, for certification projects progressing before the revision is complete. This is discussed in FAA Memorandum ANM–112–08–002, *Policy on Issuance of Special Conditions and Exemptions Related to Lightning Protection of Fuel Tank Structure*, dated May 26, 2009.

Application of Existing Regulations Inappropriate Due to Compensating Feature That Provides Equivalent Level of Safety

Section 25.981(b) sets specific standards for fuel tank flammability as discussed above under “Flammability Limits.” Under that regulation, the fleet average flammability exposure of all fuel tanks on the CSeries airplanes may not exceed 3 percent of the flammability exposure evaluation time calculated using the method in part 25, appendix N, or the fleet average flammability of a wing main tank within an equivalent construction conventional unheated aluminum wing fuel tank, whichever is greater. The typical fleet average fuel tank flammability of fuel tanks located in the wing ranges between 1 and 5 percent. If it is assumed that a CSeries equivalent conventional unheated aluminum wing fuel tank would not exceed a fleet average flammability time of 3 percent, the actual composite airplane wing fuel tank design would be required to comply with the 3 percent fleet average flammability standard, and therefore a means to reduce the flammability to 3 percent would be required. However, the proposed CSeries design includes NGS for all fuel tanks that will also be shown to meet the additional, more stringent warm day average flammability standard in part 25, appendix M, which is only required for normally emptied fuel tanks with some part of the tank within the fuselage contour. Fuel tanks that meet this requirement typically have average fuel tank flammability levels well below the required 3 percent.

Since the proposed NGS for all fuel tanks on the CSeries provides performance that meets part 25, appendix M, the FAA has determined that the risk reduction provided by this additional performance will provide compensation for some relief from the ignition prevention requirements of § 25.981(a)(3) while still establishing a level of safety equivalent to that established in the regulations. In determining the appropriate amount of relief from the ignition prevention requirements of § 25.981(a), the FAA considered the original overall intent of Amendment 25–102, which was to ensure the prevention of catastrophic events due to fuel tank vapor explosion. These special conditions are intended to achieve that objective through a prescriptive requirement that fault tolerance (with respect to the creation of an ignition source) be provided as structural lightning protection design features where providing such fault tolerance is
practical, and through a performance-based standard for the risk due to any single failure vulnerability that exists in the design. In addition, for any structural lightning protection design features for which Bombardier shows that providing fault tolerance is impractical, these special conditions would require Bombardier to show that a fuel tank vapor ignition event due to the summed risk of all non-fault-tolerant design features is extremely improbable. Bombardier would be required to show that this safety objective is met by the proposed design using a structured system safety assessment similar to that currently used for demonstrating compliance with §§ 25.901 and 25.1309.

Given these novel or unusual design features, and the compliance challenges noted earlier in this document, the FAA has determined that application of § 25.981(a)(3) is inappropriate in that it is neither practical nor necessary to apply the ignition source prevention provisions of § 25.981(a)(3) to the specific fuel tank structural lightning protection features of the Bombardier CSeries airplanes. However, without the § 25.981(a)(3) provisions, the remaining applicable regulations in the CSeries airworthiness certification basis would be inadequate to set an appropriate standard for fuel tank ignition prevention. Therefore, in accordance with provisions of § 21.16, the FAA has determined that, instead of § 25.981(a)(3), alternative fuel tank structural lightning protection requirements be applied to fuel tank lightning protection features that are integral to the airframe structure of the CSeries airplanes. These alternative requirements are intended to provide the level of safety intended by § 25.981(a)(3), based on our recognition, as discussed above, that a highly effective NGS for the fuel tanks makes it unnecessary to assume that the fuel tank is always flammable. As discussed previously, the assumption that the fuel tanks are always flammable was required when demonstrating compliance to the ignition prevention requirements of § 25.981(a)(3). One reason between these special conditions and the § 25.981(a)(3) provisions they are meant to replace is the outcome being prevented—fuel vapor ignition versus an ignition source. These special conditions acknowledge that the application of fuel tank flammability performance standards will reduce fuel tank flammability to an extent that it is appropriate to consider the beneficial effects of flammability reduction when considering design areas where it is impractical to comply with § 25.981(a)(3).

One of the core requirements of these special conditions is a prescriptive requirement that structural lightning protection design features must be fault tolerant. (An exception wherein Bombardier can show that providing fault tolerance is impractical, and associated requirements, is discussed below.) The other core requirement is that Bombardier must show that the design, manufacturing processes, and Airworthiness Limitations section of the Instructions for Continued Airworthiness include all practical measures to prevent, and detect and correct, failures of structural lightning protection features due to manufacturing variability, aging, wear, corrosion, and likely damage. The FAA has determined that, if these core requirements are met, a fuel tank vapor ignition event due to lightning is not anticipated to occur in the life of the airplane fleet. This conclusion is based on the fact that a critical lightning strike to any given airplane is itself a remote event, and on the fact that fuel tanks must be shown to be flammable for only a relatively small portion of the fleet operational life.

For any non-fault-tolerant features proposed in the design, Bombardier must show that eliminating these features or making them fault tolerant is impractical. The requirements and considerations for showing it is impractical to provide fault tolerance are described in FAA Memorandum ANM–112–08–002. This requirement is intended to minimize the number of non-fault-tolerant features in the design.

For areas of the design where Bombardier shows that providing fault tolerant structural lightning protection features is impractical, non-fault-tolerant features will be allowed provided Bombardier can show that a fuel tank vapor ignition event due to the non-fault-tolerant features is extremely improbable when the sum of probabilities of those events due to all non-fault-tolerant features considered. Bombardier will be required to submit a structured, quantitative assessment of fleet average risk for a fuel tank vapor ignition event due to all non-fault-tolerant design features included in the design. This will require determination of the number of non-fault tolerant design features, estimates of the probability of the failure of each non-fault-tolerant design feature, and estimates of the exposure time for those failures. This analysis must include failures due to manufacturing variability, aging, wear, corrosion, and likely damage.

It is acceptable to consider the probability of fuel tank flammability, the probability of a lightning strike to the airplane, the probability of a lightning strike to specific zones of the airplane (for example, Zone 2 behind the nacelle, but not a specific location or feature), and a distribution of lightning strike amplitude in performing the assessment provided the associated assumptions are acceptable to the FAA. The analysis must account for any dependencies among these factors, if they are used. The assessment must also account for operation with inoperative features and systems, including any proposed or anticipated dispatch relief. This risk assessment requirement is intended to ensure that an acceptable level of safety is provided given the non-fault-tolerant features in the proposed design.

Part 25, appendix N, as adopted in Amendment 25–125, in conjunction with these special conditions, constitutes the standard for how to determine flammability probability. In performing the safety analysis required by these special conditions, relevant § 25.981(a)(3) compliance guidance is still applicable. Appropriate credit for the conditional probability of environmental or operational conditions occurring is normally limited to those provisions involving multiple failures, and this type of credit is not normally allowed in evaluation of single failures. However, these special conditions would allow consideration of the probability of occurrence of lightning attachment and flammable conditions when assessing the probability of structural failure for resulting in a fuel tank vapor ignition event.

The FAA understands that lightning protection safety for airplane structure is inherently different from lightning protection for systems. We intend to apply these special conditions only to structural lightning protection features of fuel systems. We do not intend to apply the alternative standards used under these special conditions to other areas of the airplane design evaluation.

Requirements Provide Equivalent Level of Safety

In recognition of the unusual design feature discussed above, and the impracticality of requiring multiple fault tolerance for lightning protection of certain aspects of fuel tank structure, the FAA has determined that a level of safety that is equivalent to direct compliance with § 25.981(a)(3) will be achieved for the CSeries by applying these requirements. The FAA considers that, instead of only concentrating on fault tolerance for ignition source prevention, significantly reducing fuel tank flammability exposure in addition
to preventing ignition sources is a better approach to lightning protection for
the fuel tanks. In addition, the level of average fuel tank flammability achieved
by compliance with these special conditions is low enough that it is not
appropriate or accurate to assume in a safety analysis that the fuel tanks may
always be flammable.

Section 25.981(b), as amended by Amendment 25–125, sets limits on the
allowable fuel tank flammability for the CSeries airplanes. Paragraph 2(a) of
these special conditions applies the more stringent standard for warm day
flammability performance applicable to normally emptied tanks within the
fuselage contour from § 25.981(b) and part 25, appendix M, to all of the fuel
tanks of the CSeries airplanes.

Because of the more stringent fuel tank flammability requirements in these
special conditions, and because the flammability state of a fuel tank is
independent of the various failures of structural elements that could lead to an
ignition source in the event of lightning attachment, the FAA has agreed that it
is appropriate in this case to allow treatment of flammability as an
independent factor in the safety analysis. The positive control of
flammability and the lower flammability that is required by these special
conditions exceeds the minimum requirements of § 25.981(b). This offsets
a reduction of the stringent standard for ignition source prevention in
§ 25.981(a)(3), which assumes that the fuel tank is flammable at all times.

Given the stringent requirements for fuel tank flammability, the fuel vapor
ignition prevention and the ignition source prevention requirements in these
special conditions will prevent “. . .
catastrophic failure . . . due to ignition of fuel or vapors” as stated in
§ 25.981(a). Thus, the overall level of
safety achieved by these special conditions is considered equivalent to
that which would be required by compliance with § 25.981(a)(3) and (b).

Discussion of Comments

Notice of proposed special conditions
No. 25–14–05 for the Bombardier
CSeries airplanes was published in the
Federal Register on July 25, 2014 (79 FR
43318). No comments were received,
and the special conditions are adopted
as proposed.

Applicability

As discussed above, these special
conditions are applicable to the Models
BD–500–1A10 and BD–500–1A11 series
airplanes. Should Bombardier
Aerospace apply at a later date for a
change to the type certificate to include
another model incorporating the same
novel or unusual design feature, the
special conditions would apply to that
model as well.

Conclusion

This action affects only certain novel
or unusual design features on two
model series of airplanes. It is not a rule
of general applicability.

List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting
and recordkeeping requirements.

The authority citation for these
special conditions is as follows:

Authority: 49 U.S.C. 106(q), 40113, 44701,
44702, 44704.

The Special Conditions

Accordingly, pursuant to the authority
delegated to me by the Administrator,
the following special conditions are
issued as part of the type certification
basis for Bombardier Aerospace Models
BD–500–1A10 and BD–500–1A11 series
airplanes.

Alternate Fuel Tank Structural
Lightning Protection Requirements

1. Definitions

Most of the terms used in these
special conditions either have the
common dictionary meaning or are
defined in Advisory Circular 25.1309–
1A, System Design and Analysis, dated
June 21, 1988. The following definitions
are the only terms intended to have a
specialized meaning when used in these
special conditions:

(a) Basic Airframe Structure. Includes
design elements such as structural
members, structural joint features, and
fastener systems including airplane
skins, ribs, spars, stringers, etc., and
associated fasteners, joints, coatings,
and sealant. Basic airframe structure
may also include those structural
elements that are expected to be
removed for maintenance, such as
exterior fuel tank access panels and
fairing attachment features, provided
maintenance errors that could
compromise associated lightning
protection features would be evident
upon an exterior preflight inspection
of the airplane and would be corrected
prior to flight.

(b) Permanent Systems Supporting
Structure. Includes static, permanently
attached structural parts (such as
brackets) that are used to support
system elements. It does not include any
part intended to be removed, or any
joint intended to be separated, to
maintain or replace system elements or
other parts, unless that part removal or
joint separation is accepted by the FAA
as being extremely remote.

(c) Manufacturing Variability.
Includes tolerances and variability
allowed by the design and production
specifications as well as anticipated
effects or escapes from the
manufacturing and inspection
processes.

(d) Extremely Remote. Conditions that
are not anticipated to occur to each
airplane during its total life, but which
may occur a few times when
considering the total operational life of
all airplanes of one type. Extremely
remote conditions are those having an
average probability per flight hour on
the order of 1 × 10−9 or less, but greater
than or on the order of 1 × 10−10.

(e) Extremely Improbable. Conditions
that are so unlikely that they are
not anticipated to occur during the
entire operational life of all airplanes of
one type. Extremely improbable conditions
are those having an average
probability per flight hour of the order of 1 × 10−9
or less.

2. Alternative Fuel Tank Structural
Lightning Protection Requirements

For lightning protection features that
are integral to fuel tank basic airframe
structure or permanent systems
supporting structure, as defined in
Special Condition No. 1, “Definitions,”
for which Bombardier shows and the
FAA finds compliance with
§ 25.981(a)(3) to be impractical, the
following requirements may be applied
in lieu of the requirements of
§ 25.981(a)(3):

(a) Bombardier must show that the
airplane design meets the requirements
of part 25, appendix M, as amended by
Amendment 25–125, for all fuel tanks
installed on the airplane.

(b) Bombardier must show that the
design includes at least two
independent, effective, and reliable
lightning protection features (or sets of
features) such that fault tolerance to
prevent lightning-related ignition
sources is provided for each area of the
structural design proposed to be shown
compliant with these special conditions
in lieu of compliance with the
requirements of § 25.981(a)(3). Fault
tolerance is not required for any specific
design feature if:

(1) For that feature, providing fault
tolerance is shown to be impractical,
and

(2) Fuel tank vapor ignition due to
that feature and all other non-fault-
tolerant features, when their fuel tank
ignition event probabilities are summed,
is shown to be extremely improbable.
(c) Bombardier must perform an analysis to show that the design, manufacturing processes, and the airworthiness limitations section of the instructions for continued airworthiness include all practical measures to prevent, and detect and correct, failures of structural lightning protection features due to manufacturing variability, aging, wear, corrosion, and likely damage.

Issued in Renton, Washington, on February 25, 2015.

Jeffrey E. Duven,
Manager, Transport Airplane Directorate, Aircraft Certification Service.

[FR Doc. 2015-05047 Filed 3-4-15; 8:45 am]
BILLING CODE 4910–13–P

DEPARTMENT OF COMMERCE
Bureau of Industry and Security
15 CFR Part 748
[Docket No. 150206120–5120–01]

RIN 0694–AG50
Amendments to Existing Validated End-User Authorization in the People’s Republic of China: Samsung China Semiconductor Co. Ltd.
AGENCY: Bureau of Industry and Security, Commerce.
ACTION: Final rule.

SUMMARY: In this rule, the Bureau of Industry and Security (BIS) amends the Export Administration Regulations (EAR) to revise the existing authorization for Validated End User Samsung China Semiconductor Co. Ltd. (Samsung China) in the People’s Republic of China (PRC). Specifically, BIS amends Supplement No. 7 to Part 748 of the EAR to add two items to Samsung China’s eligible items that may be exported, reexported, or transferred (in-country) to the company’s eligible facilities (also known as “eligible destinations”) in the PRC.

DATES: This rule is effective March 5, 2015.

FOR FURTHER INFORMATION CONTACT: Mi-Yong Kim, Chair, End-User Review Committee, Office of the Assistant Secretary, Export Administration, Bureau of Industry and Security, U.S. Department of Commerce, Phone: 202–482–5991; Fax: 202–482–3911; Email: ERC@bis.doc.gov.

SUPPLEMENTARY INFORMATION:

Background

Authorization Validated End-User
Validated End-Users (VEUs) are designated entities located in eligible destinations to which eligible items may be exported, reexported, or transferred (in-country) under a general authorization instead of a license. The names of the VEUs, as well as the dates they were so designated, and their respective eligible destinations and items are identified in Supplement No. 7 to Part 748 of the EAR. Under the terms described in that supplement, VEUs may obtain eligible items without an export license from BIS, in conformity with Section 748.15 of the EAR. Eligible items vary between VEUs and may include commodities, software, and technology, except those controlled for missile technology or crime control reasons on the Commerce Control List (CCL) (part 774 of the EAR).

VEUs are reviewed and approved by the U.S. Government in accordance with the provisions of Section 748.15 and Supplement Nos. 8 and 9 to Part 748 of the EAR. The End-User Review Committee (ERC), composed of representatives from the Departments of State, Defense, Energy, and Commerce, and other agencies, as appropriate, is responsible for administering the VEU program. BIS amended the EAR in a final rule published on June 19, 2007 (72 FR 33646) to create Authorization VEU.

Amendment to Existing VEU Authorization for Samsung China Semiconductor Co. Ltd (Samsung China) in the People’s Republic of China (PRC)
Revision to the List of “Eligible Items (by ECCN)” for Samsung China
In this final rule, BIS amends Supplement No. 7 to Part 748 to add two Export Control Classification Numbers (ECCNs), 2B006.a and 2B006.b.1.d, to the list of items that may be exported, reexported or transferred (in-country) to Samsung China’s facility in the PRC under Authorization VEU. The revised list of eligible items for Samsung China is as follows:

Eligible Items (by ECCN) That May Be Exported, Reexported or Transferred (In-Country) to the Eligible Destination Identified Under Samsung China Semiconductor Co. Ltd.’s Validated End-User Authorization
1C350.c.3, 1C350.d.7, 2B006.a, 2B006.b.1.d, 2B230, 2B350.g.3, 2B350.h.3, 3A233, 3B001.a.1, 3B001.b, 3B001.c, 3B001.e, 3B001.f, 3B001.h, 3C002, 3C004, 3D002, and 3E001 (limited to “technology” for items classified under 3C002 and 3C004 and “technology” for use consistent with the International Technology Roadmap for Semiconductors process for items classified under ECCNs 3B001 and 3B002).

Export Administration Act
Since August 21, 2001, the Export Administration Act of 1979, as amended, has been in lapse. However, the President, through Executive Order 13222 of August 17, 2001, 3 CFR 2001 Comp., p. 783 (2002), as amended by Executive Order 13637 of March 8, 2013, 78 FR 16129 (March 13, 2013), and as extended by the Notice of August 7, 2014, 79 FR 46959 (August 11, 2014) has continued the EAR in effect under the International Emergency Economic Powers Act (50 U.S.C. 1701 et seq.). BIS continues to carry out the provisions of the Export Administration Act, as appropriate and to the extent permitted by law. pursuant to Executive Order 13222, as amended by Executive Order 13637.

Rulemaking Requirements
1. Executive Orders 13563 and 12866 direct agencies to assess all costs and benefits of available regulatory alternatives and, if regulation is necessary, to select regulatory approaches that maximize net benefits (including potential economic, environmental, public health and safety effects, distributive impacts, and equity). Executive Order 13563 emphasizes the importance of quantifying both costs and benefits, reducing costs, harmonizing rules, and promoting flexibility. This rule has been determined to be not significant for purposes of Executive Order 12866.

2. This rule involves collections previously approved by the Office of Management and Budget (OMB) under Control Number 0694–0088, “Multi-Purpose Application,” which carries a burden hour estimate of 43.8 minutes to prepare and submit form BIS–748; and for recordkeeping, reporting and review requirements in connection with Authorization VEU, which carries an estimated burden of 30 minutes per submission. This rule is expected to result in a decrease in license applications submitted to BIS. Total burden hours associated with the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.) (PRA) and OMB Control Number 0694–0088 are not expected to increase significantly as a result of this rule. Notwithstanding any other provisions of law, no person is required to respond to, nor be subject to a penalty for failure to comply with a