group) or to determine the condition of the grove.

10. Causes of Loss

(a) * * * *

(9) Insects and plant disease, unless excluded or otherwise restricted through the Special Provisions, provided the loss of production is not due to damage resulting from insufficient or improper application of control measures as recommended by agricultural experts.

(b) In addition to the causes of loss excluded in section 12 of the Basic Provisions, we will not insure against damage or loss of production due to the inability to market the citrus for any reason other than actual physical damage from an insurable cause of loss specified in this section. For example, we will not pay you an indemnity if you are unable to market due to quarantine, boycott, or refusal of any person to accept production.

11. Duties in the Event of Damage or Loss

(a) In accordance with the requirements of section 14 of the Basic Provisions, you must leave representative samples. In lieu of the requirements of section 14(c)(3) of the Basic Provisions, we will determine which trees must remain unharvested so that we may inspect them in accordance with FCIC procedures.

(b) * * * *

(2) If you intend to claim an indemnity on any unit, you must notify us at least 15 days prior to the beginning of harvest, or within 24 hours if damage is discovered during harvest, so we may have an opportunity to inspect the unit. You must not sell or dispose of the damaged crop until after we have given you written consent to do so. If you fail to meet the requirements of this section, all such production will be considered undamaged and included as production to count.

12. Settlement of Claim

(a) * * * *

(1) Multiplying the insured acreage for each combination of commodity type and intended use by its respective production guarantee; * * * *

(e) Any citrus fruit insured with an intended use of fresh that is not marketable as fresh fruit due to insurable causes will be adjusted by multiplying the number of tons of such citrus fruit by the applicable Fresh Fruit Factor contained in the Special Provisions.

* * * *

Signed in Washington, DC, on June 6, 2016.

Michael Alston,
Acting Manager, Federal Crop Insurance Corporation.

[FR Doc. 2016–13770 Filed 6–10–16; 8:45 am]
BILLING CODE 3410–08–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 31
[Docket No. FAA–2016–5424; Special Conditions No. 31–001–SC]

Special Conditions: Ultramagic, S.A., Mark–32 Burner Series

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Final special conditions.


DATES: These special conditions are effective June 13, 2016 and is applicable beginning May 25, 2016.


SUPPLEMENTARY INFORMATION:

Background


Type Certification Basis


c. Equivalent Level of Safety (ELOS) Findings per provision of 14 CFR 21.21(b)(1):

(1) ACE–08–15,1 August 1, 2008, Burners, 14 CFR 31.47(d).


Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, or should any other model already included on the same type certificate be modified to incorporate the same or similar novel or unusual design feature, the special conditions would also apply to the other model under §21.101. The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with §11.38, and they become part of the type-certification basis under §21.101.

Novel or Unusual Design Features


The oxygen augmentation and hydraulic control.

Discussion

Based on the provisions of §§21.17 and 21.29 and the U.S.-EASA Technical Implementation Procedures for Airworthiness and Environmental Certification Between the Federal Aviation Administration of the United States of America and the European Aviation Safety Agency of the European Union, the following airworthiness requirements are applicable to this project and will remain active for three years from the date of application and form the Certification Basis:

a. Part 31, amendment 7 (The certification basis complied with according to the Ultramagic part 31 compliance checklist.)
b. ELOS Findings: The FAA notes that it has issued equivalent level of safety findings per provision of 14 CFR 21.21(b)(1), specifically ACE–08–153 on August 1, 2008, Burners, §31.47(d) and then extended the ELOS as ACE–08–15A 4 on November 05, 2013, Burners, §31.47(d), for the Model S–70. This ELOS has not been applied to the MK–32 and therefore not applicable.

3. Special conditions: The FAA notes that Ultramagic elected to comply with certain provisions of CS–23, amendment 3, that apply to oxygen systems. These provisions are applicable because there is an oxygen augmented igniter system available for the MK–32 burner. The following 14 CFR regulations, except §23.1445, are harmonized with their CS–23, amendment 3, counterpart regulations and form the basis of this special condition.

Applicability


Conclusion

This action affects only certain novel or unusual design features on one model series of burners. It is not a rule of general applicability and it affects only the applicant who applied to the FAA for approval of these features on the balloons.

List of Subjects in 14 CFR Part 31

Aircraft, Aviation safety, Signs and symbols.

Citation

The authority citation for these special conditions is as follows:

The Special Conditions


(a) In addition to the provisions of part 31, amendment 7, the applicant must design the MK–32 Burner to comply with the requirements, as described below, with respect to the igniter oxygen augmentation system and hydraulic burner valve actuation system:

Oxygen Distribution System

(1) Except for flexible lines from oxygen outlets to the dispensing units, or where shown to be otherwise suitable to the installation, nonmetallic tubing must not be used for any oxygen line that is normally pressurized during flight.

(2) Nonmetallic oxygen distribution lines must not be routed where they may be subjected to elevated temperatures, electrical arcing, and released flammable fluids that might result from any probable failure.

Fire Protection for Oxygen Equipment

Oxygen equipment and lines must:

(1) Not be installed in any designated fire zones.

(2) Be protected from heat that may be generated in, or escape from, any designated fire zone.

(3) Be installed so that escaping oxygen cannot come in contact with and cause ignition of grease, fluid, or vapor accumulations that are present in normal operation or that may result from the failure or malfunction of any other system.

Protection of Oxygen Equipment From Rupture

(1) Each element of the oxygen system must have sufficient strength to withstand the maximum pressure and temperature, in combination with any externally applied loads arising from consideration of limit structural loads that may be acting on that part of the system.

(2) Oxygen pressure sources and the lines between the source and the shutoff means must be:

(i) Protected from unsafe temperatures; and

(ii) Located where the probability and hazard of rupture in a crash landing are minimized.

Hydraulic Systems

(1) Design. Each hydraulic system must be designed as follows:

(i) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected in addition to hydraulic loads.

(ii) A means to indicate the pressure in each hydraulic system which supplies two or more primary functions must be provided to the flight crew.

(iii) There must be means to ensure that the pressure, including transient (surge) pressure, in any part of the system will not exceed the safe limit above design operating pressure and to prevent excessive pressure resulting from fluid volumetric changes in all lines which are likely to remain closed long enough for such changes to occur.

(iv) The minimum design burst pressure must be 2.5 times the operating pressure.

(2) Tests. Each system must be substantiated by proof pressure tests. When proof tested, no part of any system may fail, malfunction, or experience a permanent set. The proof load of each system must be at least 1.5 times the maximum operating pressure of that system.

(3) Accumulators. A hydraulic accumulator or reservoir may be installed on the engine side of any firewall, if—

(i) It is an integral part of an engine or propeller system; or

(ii) The reservoir is nonpressurized and the total capacity of all such nonpressurized reservoirs is one quart or less.

(b) Ultramagic, through EASA, will provide the FAA with all Airworthiness Directives issued against the changed type design, if any, and a plan for resolving the unsafe conditions for the FAA type design.

Issued in Kansas City, Missouri, on May 25, 2016.

Pat Mullen,
Acting Manager, Small Airplane Directorate, Aircraft Certification Service.

[FR Doc. 2016–13556 Filed 6–10–16; 8:45 am]

BILLING CODE 4910–13–P