NAME OF COMMITTEE: Board of Scientific Advisors.

OPEN: October 31, 2016, 1:00 p.m. to 4:00 p.m.

AGENDA: RFA and RFP Concept Reviews.

PLACE: National Cancer Institute Shady Grove, 9609 Medical Center Drive, Room TE406, Rockville, MD 20850 (Virtual Meeting).

CONTRACT PERSON: Paulette S. Gray, Ph.D., Executive Secretary, Division of Extramural Activities, National Cancer Institute—Shady Grove, National Institutes of Health, 9609 Medical Center Drive, Room 7W444, Bethesda, MD 20892, 240–276–6340, grayp@mail.nih.gov.

Any interested person may file written comments with the committee by forwarding the statement to the Contact Person listed on this notice. The statement should include the name, address, telephone number and when applicable, the business or professional affiliation of the interested person.

In the interest of security, NCI Shady Grove will institute stringent procedures for entrance into the NCI Shady Grove building. Visitors will be asked to show one form of identification (for example, a government-issued photo ID, driver’s license, or passport) and to state the purpose of their visit.

Information is also available on the Institute/s/Center’s home page: http://deainfo.nci.nih.gov/advisory/bsa/bsa.htm, where an agenda and any additional information for the meeting will be posted when available.

SUPPLEMENTARY INFORMATION:

INTELLECTUAL PROPERTY


The patent rights in these inventions have been assigned and/or exclusively licensed to the government of the United States of America.

The prospective exclusive license territory may be worldwide and the field of use may be limited to the use of Licensed Patent Rights for the following: “Use of photosensitizing antibody-fluorophore conjugate defined by the Licensed Patent Rights by itself for PhotolImmunoTherapy (PIT), or in combination with cancer therapeutic agents, to treat cancer or hyperplasia.”

This technology discloses the concept of binding an anti-foxp3+ antibody to IR700 to bind to foxp3+ T-cells. When irradiated with near infrared light localized at the site of the solid tumor, controlled local knockdown of foxp3+ negative regulatory T-cells in tumors results in rapid tumor death without the severe autoimmune response that is induced by systemic knock-down of foxp3+ T-cells. Theoretically, this technology can be used in a broad spectrum of patients with a variety of solid cancers including those with