Proposed Rules

Federal Register

Vol. 82, No. 71

Friday, April 14, 2017

This section of the FEDERAL REGISTER contains notices to the public of the proposed issuance of rules and regulations. The purpose of these notices is to give interested persons an opportunity to participate in the rule making prior to the adoption of the final rules.

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 23

[Docket No. FAA-2017-0290; Notice No. 23-17-01-SC]

Special Conditions: Pilatus Aircraft Limited Models PC-12, PC-12/45, PC-12/47; Autothrust System

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed special conditions.

SUMMARY: This action proposes a special condition for the Pilatus Aircraft Limited PC-12, PC-12/45, and PC-12/ 47 airplanes. These airplanes, as modified by Innovative Solutions & Support, Inc., will have a novel or unusual design feature associated with the use of an autothrust system. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. This proposed special condition contains the additional safety standards the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

DATES: Send your comment on or before May 15, 2017.

ADDRESSES: Send comments identified by docket number FAA–2017–0290 using any of the following methods:

- Federal eRegulations Portal: Go to http://www.regulations.gov and follow the online instructions for sending your comments electronically.
- *Mail:* Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001.
- Hand Delivery of Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9

a.m., and 5 p.m., Monday through Friday, except Federal holidays.

• Fax: Fax comments to Docket Operations at 202–493–2251.

Privacy: The FAA will post all comments it receives, without change, to http://regulations.gov, including any personal information the commenter provides. Using the search function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477–19478), as well as at http://DocketsInfo.dot.gov.

Docket: Background documents or comments received may be read at http://www.regulations.gov at any time. Follow the online instructions for accessing the docket or go to the Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m., and 5 p.m., Monday through Friday, except Federal holidays. FOR FURTHER INFORMATION CONTACT: Leff

Pretz, Federal Aviation Administration, Small Airplane Directorate, Aircraft Certification Service, 901 Locust, Room 301, Kansas City, MO 64106; telephone (816) 329–3239; facsimile (816) 329–4090.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data. We ask that you send us two copies of written comments.

We will consider all comments we receive on or before the closing date for comments. We will consider comments filed late if it is possible to do so without incurring expense or delay. We may change these special conditions based on the comments we receive.

Background

On April 4, 2016, Innovative Solutions & Support applied for a supplemental type certificate for installation of an autothrust system in

the PC-12, PC-12/45, and PC-12/47 airplanes. The autothrust system is capable of setting forward thrust based on operation in either a pilot selectable torque or airspeed mode. Operation is limited to use only when above 400 feet AGL after takeoff, and requires disengagement at decision height (DH) or minimum decision altitude (MDA) on approach. The PC-12, PC-12/45, and PC-12/47 airplanes are nine-passenger two-crew, single-engine turbo-propeller airplanes with a 30,000-foot service ceiling and a maximum takeoff weight of 9,039 to 10,450 pounds—depending on airplane model. These airplanes are powered by a single Pratt & Whitney PT6A-67 engine.

The Innovative Solutions & Support, Inc., modification installs an autothrust system in the PC-12, PC-12/45, and PC-12/47 airplanes to reduce pilot workload. The autothrust system is useable in all phases of flight from 400 feet AGL after takeoff down to the decision height on approach. The system includes a torque and airspeed mode along with monitors to prevent the system from exceeding critical engine or airspeed limits. A stepper motor provides throttle movement by acting through a linear actuator, which acts as a link between the stepper motor and throttle. The pilot can override the linear actuator by moving the throttle, which automatically disengages the autothrust system upon disagreement in the expected throttle position versus the actual position.

Type Certification Basis

Under the provisions of 14 CFR 21.101, Innovative Solutions & Support must show that the PC–12, PC–12/45, and PC–12/47 airplanes, as changed, continues to meet the applicable provisions of the regulations incorporated by reference in Type Certificate No. A78EU. The regulations incorporated by reference in the type certificate are commonly referred to as the "original type certification basis." The regulations incorporated by reference in A78EU are as follows: 14 CFR part 23, amendments 23–1 through 23–42.²

If the Administrator finds the applicable airworthiness regulations

² See Type Certification Data Sheet A78EU, revision 25, "Certification Basis" section for the PC–12, PC–12/45, and PC–12/47 full certification basis (http://rgl.faa.gov/).

(i.e., 14 CFR part 23) do not contain adequate or appropriate safety standards for the PC–12, PC–12/45, and PC–12/47 airplanes because of a novel or unusual design feature(s), special conditions are prescribed under the provisions of § 21.16.

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38 and they become part of the type certification basis under § 21.101. Special conditions are initially applicable to the model for which they are issued. Should the applicant apply for a supplemental type certificate to modify any other model included on the same type certificate to incorporate the same novel or unusual design feature, the FAA would apply these special conditions to the other model under § 21.101.

In addition to the applicable airworthiness regulations and special conditions, the PC–12, PC–12/45, and PC–12/47 airplanes must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36.

Novel or Unusual Design Features

The PC-12, PC-12/45, and PC-12/47 airplanes will incorporate the following novel or unusual design features: Autothrust system.

Discussion

As discussed in the summary section, this modification makes use of an autothrust system, which is a novel design for this type of airplane. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. Mandating additional requirementsdeveloped in part—by adapting relevant portions of 14 CFR 25.1329, Flight guidance systems—applicable to autothrust systems—along with FAA experience with similar autothrust systems, mitigates the concerns associated with installation of the proposed autothrust system.

The FAA has previously issued this proposed special condition to part 23 turbojet airplanes, but not for turbopropeller airplanes. The PC–12, PC–12/45, and PC–12/47 airplanes are unique with respect to other turbo-propeller designs in that the basic design does not include a separate propeller control lever. Future use of these special conditions on other turbo-propeller designs will require evaluation of the engine and propeller control system to determine their appropriateness.

Applicability

As discussed above, these special conditions are applicable to the PC–12, PC–12/45, and PC–12/47 airplanes. Should Innovative Solutions & Support, Ltd. apply at a later date for a supplemental type certificate to modify any other model included on Type Certificate No. A78EU to incorporate the same novel or unusual design feature, the FAA would apply these special conditions to that model as well.

Conclusion

This action affects only certain novel or unusual design features on PC–12, PC–12/45, and PC–12/47 airplanes. It is not a rule of general applicability and affects only the applicant who applied to the FAA for approval of these features on the airplane.

List of Subjects in 14 CFR Part 23

Aircraft, Aviation safety, Signs and symbols.

Citation

The authority citation for these special conditions is as follows:

Authority: 49 U.S.C. 106(f), 106(g), 40113, 44701–44702, 44704.

The Proposed Special Conditions

Accordingly, the Federal Aviation Administration (FAA) proposes the following special condition as part of the type certification basis for Pilatus Aircraft Ltd., PC–12, PC–12/45, and PC–12/47 airplane models modified by Innovative Solutions & Support, Inc.

1. Autothrust System

In addition to the requirements of §§ 23.143, 23.1309, and 23.1329, the following apply:

(a) Quick disengagement controls for the autothrust function must be provided for each pilot. The autothrust quick disengagement controls must be located on the thrust control levers. Quick disengagement controls must be readily accessible to each pilot while operating the thrust control levers.

(b) The effects of a failure of the system to disengage the autothrust function when manually commanded by the pilot must be assessed in accordance with the requirements of § 23.1309.

(c) Engagement or switching of the flight guidance system, a mode, or a sensor may not cause the autothrust system to affect a transient response that alters the airplane's flight path any greater than a minor transient, as defined in paragraph (l)(1) of this special condition.

(d) Under normal conditions, the disengagement of any automatic control function of a flight guidance system may not cause a transient response of the airplane's flight path any greater than a minor transient.

(e) Under rare normal and non-normal conditions, disengagement of any automatic control function of a flight guidance system may not result in a transient any greater than a significant transient, as defined in paragraph (l)(2) of this special condition.

(f) The function and direction of motion of each command reference control, such as heading select or vertical speed, must be plainly indicated on—or adjacent to—each control if necessary to prevent inappropriate use or confusion.

(g) Under any condition of flight appropriate to its use, the flight guidance system may not produce hazardous loads on the airplane, nor create hazardous deviations in the flight path. This applies to both fault-free operation and in the event of a malfunction, and assumes that the pilot begins corrective action within a reasonable time.

(h) When the flight guidance system is in use, a means must be provided to avoid excursions beyond an acceptable margin from the speed range of the normal flight envelope. If the airplane experiences an excursion outside this range, a means must be provided to prevent the flight guidance system from providing guidance or control to an unsafe speed.

(i) The flight guidance system functions, controls, indications, and alerts must be designed to minimize flightcrew errors and confusion concerning the behavior and operation of the flight guidance system. A means must be provided to indicate the current mode of operation, including any armed modes, transitions, and reversions. Selector switch position is not an acceptable means of indication. The controls and indications must be grouped and presented in a logical and consistent manner. The indications must be visible to each pilot under all expected lighting conditions.

(j) Following disengagement of the autothrust function, a caution (visual and auditory) must be provided to each pilot.

(k) During autothrust operation, it must be possible for the flightcrew to move the thrust levers without requiring excessive force. The autothrust may not create a potential hazard when the flightcrew applies an override force to the thrust levers.

(l) For purposes of this section, a transient is a disturbance in the control or flight path of the airplane that is not consistent with response to flightcrew inputs or environmental conditions.

- (1) A minor transient would not significantly reduce safety margins and would involve flightcrew actions that are well within their capabilities. A minor transient may involve a slight increase in flightcrew workload or some physical discomfort to passengers or cabin crew.
- (2) A significant transient may lead to a significant reduction in safety margins, an increase in flightcrew workload, discomfort to the flightcrew, or physical distress to the passengers or cabin crew, possibly including non-fatal injuries. Significant transients do not require—in order to remain within or recover to the normal flight envelope—any of the following:

(i) Exceptional piloting skill, alertness, or strength.

- (ii) Forces applied by the pilot which are greater than those specified in § 23.143(c).
- (iii) Accelerations or attitudes in the airplane that might result in further hazard to secured or non-secured occupants.

Issued in Kansas City, Missouri on April 4, 2017.

Pat Mullen.

Acting Manager, Small Airplane Directorate, Aircraft Certification Service.

[FR Doc. 2017-07382 Filed 4-13-17; 8:45 am]

BILLING CODE 4910-13-P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 39

[Docket No. FAA-2017-0164; Directorate Identifier 2017-NE-06-AD]

RIN 2120-AA64

Airworthiness Directives; General Electric Company Turbofan Engines

AGENCY: Federal Aviation Administration (FAA), DOT.

ACTION: Notice of proposed rulemaking

(NPRM).

SUMMARY: We propose to adopt a new airworthiness directive (AD) for certain General Electric Company (GE) CF34–8 model turbofan engines. This proposed AD was prompted by analysis that resulted in the reduction of the life of the affected fan blades. This proposed AD would require inspections of the affected fan blades until their removal. We are proposing this AD to correct the unsafe condition on these products.

DATES: We must receive comments on this proposed AD by May 30, 2017.

ADDRESSES: You may send comments, using the procedures found in 14 CFR

- 11.43 and 11.45, by any of the following methods:
- Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the instructions for submitting comments.
 - *Fax:* 202–493–2251.
- *Mail:* U.S. Department of Transportation, Docket Operations, M— 30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE., Washington, DC 20590.

• Hand Delivery: Deliver to Mail address above between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For service information identified in this NPRM, contact General Electric Company, GE-Aviation, Room 285, 1 Neumann Way, Cincinnati, OH 45215, phone: 513–552–3272; fax: 513–552–3329; email: geae.aoc@ge.com. You may view this service information at the FAA, Engine & Propeller Directorate, 1200 District Avenue, Burlington, MA. For information on the availability of this material at the FAA, call 781–238–7125.

Examining the AD Docket

You may examine the AD docket on the Internet at http://www.regulations.gov by searching for and locating Docket No. FAA-2017-0164; or in person at the Docket Management Facility between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this proposed AD, the regulatory evaluation, any comments received, and other information. The street address for the Docket Office (phone: 800-647-5527) is in the ADDRESSES section. Comments will be available in the AD docket shortly after receipt.

FOR FURTHER INFORMATION CONTACT:

Martin Adler, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 1200 District Avenue, Burlington, MA 01803; phone: 781–238–7157; fax: 781–238–7199; email: martin.adler@faa.gov.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite you to send any written relevant data, views, or arguments about this NPRM. Send your comments to an address listed under the ADDRESSES section. Include "Docket No. FAA—2017—0164; Directorate Identifier 2017—NE—06—AD" at the beginning of your comments. We specifically invite comments on the overall regulatory, economic, environmental, and energy aspects of this NPRM. We will consider all comments received by the closing date and may amend this NPRM because of those comments.

We will post all comments we receive, without change, to http://www.regulations.gov, including any personal information you provide. We will also post a report summarizing each substantive verbal contact we receive about this NPRM.

Discussion

We learned that GE has determined, based on analysis, that the stresses in the pinholes in the affected fan blade could result in crack initiation at pinhole surfaces beyond 19,000, 19,500, or 25,000 cyles-since-new (CSN), depending on the engine model on which the blade is installed. GE, therefore, has initiated a program of initial and repetitive eddy current inspections (ECIs) and removal of this fan blade before it reaches 41,000 CSN. GE also provided an option to repair the blade which allows for an additional 28,000 cycles before it must be removed. This condition, if not corrected, could result in failure of the fan blade, uncontained blade release, damage to the engine, and damage to the airplane.

Related Service Information Under 1 CFR Part 51

We reviewed GE Alert Service
Bulletins (ASBs) CF34–8C SB 72–A0137
R05, dated June 15, 2016; and CF34–8E
SB 72–A0060 R05, dated June 15, 2016.
These ASBs provide the procedures
necessary for calculating the adjusted
CSN for the initial inspection. This
service information is reasonably
available because the interested parties
have access to it through their normal
course of business or by the means
identified in the ADDRESSES section.

Other Related Service Information

We reviewed GE ASB CF34–8E SB 72–A0115 R03, issued on December 9, 2016, and GE ASB CF34–8C SB 72–A0225 R03, issued on December 9, 2016. The ASB's describe procedures for repairing fan blade, part number (P/N) 4114T15P02, to P/N 4114T31G01 with the installation of a bushing in the pinholes.

FAA's Determination

We are proposing this AD because we evaluated all the relevant information and determined the unsafe condition described previously is likely to exist or develop in other products of the same type design.

Proposed AD Requirements

This proposed AD would require initial and repetitive ECIs of the affected fan blade. This proposed AD would also require removal or repair of the affected fan blade at a reduced life. A fan blade